CONVECTIVE HEAT AND MASS EXCHANGE
IN ASYMMETRIC FLUIDS
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Equations and boundary conditions of the theory of highly intensive convective heat- and
mass-exchange processes in nonlinear asymmetric fluids are formulated. The specifics
of the transport process in macrocapillaries and a slightly rarefied gas are taken into ac~
count. Problems of free convection in a vertical channel, diffusion of Brownian particles,
and heat exchange in a tube, are solved.

Theoretical investigation of convective heat- and mass-exchange processes is constructed on the
basis of specific models of continuous media and the transport processes therein. As science develops, and
in connection with the demands of practice, the models of continuous media and the transport processes
therein become complicated [1-11]. From our viewpoint, the following generalizations of classical models
of a continuous medium are of great interest: 1) the construction of a nonlinear mechanics of continuous
media; and 2) the creation of an asymmetric mechanics of solids and fluids [6-30].

Transport processes in fluid and solid media whose rheological behavior is described by linear and
nonlinear asymmetric mechanics have practically not been examined up to now.

An attempt is made herein to formulate the fundamental equations and boundary conditions of a theory
of highly intensive transport processes in asymmetric fluids. The specifics of these processes is illu-
strated in a number of specific linear heat- and mass-exchange processes. It is shown that the need to
take account of the asymmetric properties of the medium arises naturally in a study of heat and mass
exchange in disperse media and rheological systems.

Nonlinear Asymmetric Mechanics of Continuous Media

In constructing the ordinary continual mechanics of continuous media it is assumed that the stress
state is determined entirely by a symmetric stress tensor. This corresponds to the ideal model of a con-
tinuous media when physically an infinitesimal volume can be considered spherically symmetric and the
interaction between such volumes can be computed by using central forces. If such a representation is im~
possible under some considerations (and such considerations appear more and more often), the effect of
one volume element of a medium on another must be described by using noncentral forces and moments
which can be connected in the usual way with the stress tensor ¢ji and the micromoment tensor uy. It
hence turns out that the stress may be asymmetric, and its symmetry in the customary theory is associated
with neglecting not only the rotational interactions between volume elements of the medium, but also the
external spatially distributed effect on the medium.

In principle, taking account of the rotational interaction between volume elements is apparently im-
portant in studying the convective heat and mass exchange in disperse systems of non-Newtonian fluids.
A theoretical study of transport processes in such systems is often carried out within the scope of a single-
fluid approximation, i.e., within the scope of the representation of a continuous medium by using the re-
duced MacAdam parameters [4], say. However, particles of the dispersed phase, or individual macro-
molecule elements possess intrinsic rotation which affects their translational motion; and this canbetaken
into account within the scope of the asymmetric mechanics of a continuous medium.
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Within the scope of asymmetric mechanics, the strain state is described by the strain tensor ejg,
the strain rates éik’ the strain moment tensor rjj, and the strain moment rates ry,, while the dynamies
of a moving fluid is described by the velocity vector v; and the intrinsic angular velocity vector wj.

As usual, the thermodynamic state is described by the temperature T, the density p and the pres-
sure p, which are interrelated by the equation of state

Fp, p, T)=0. (1)

Let us derive the fundamental equations of motion. Let us limit ourselves to the analysis of fluid
media, where the strain state is described only by the strain rate tensor ej) and the strain moment rate
tensor ryp. For finite strains the strain rates ejx and rjy are related to the field of the velocities v; and
the intrinsic angular velocities w; as follows:

1 0v; Ou; 1 v, dvu 1 du Ov
Cip = —— L 8 (1§, o k05
k 2 ( 0x; Ox; ) 2 Y 0x; Ox; 2 ba) 0x; 0x; e
—
ik axh ’ (2)
where &;; is the Levi- Civitas tensor.
Let us write the rheological equations of state as
Oy, = pﬁth -+ U 8, — (M —v) ém + -+ Y) i VB i MeChiClis 3)
My -= "laru‘sz/c F oy l“ih + 115’:}{2 + mﬂﬁm - '17")/11’";'12 M Ny M v 200 (4)

However, let us consider the coefficients of volume 7y, shear 1, and rotational 7; viscosity, as well
as a coefficient characterizing the measure of "coupling" between the translational and intrinsic rotational
motions of the fluid particle y to be functions iy and I, of the fundamental tensor invariants ey, rik, Or

(Oik, k)i

Ll = enn: [1 = rnn!

Ly = €nnlhy — €nplrns 12 = Fanlny — "nlhns (5)

iS Det J .eih l’

S
Fip |-

In the general case, the arbitrary, but sufficiently smooth, dependence of the physical parameters of
the medium Y; (we understand Y; to be the coefficient of viscosity, v, etc.) on the tensor invariants can be
represented by power series

—_— N\ [y i1 f
Y = Zan[ i i (s [ s [,

6)
Their effective values [4] should be understood for the coefficients of viscosity for a single-fluid descrip-
tion of disperse systems of the liquid (gas)—solid particle suspension type.
The laws of conservation of momentum and the moment of momentum are in the general case
00y du,
i + of; =p i ,
0x, Fi= dt 7)
aszh dM
Oam®imn + m; == %'r
ax, 7 ®)
where p is the density of an asymmetric fluid; m; is the density of the spatially distributed forces and
moments; d/dt is the substantial derivative.
It is necessary to add the continuity equation
. 9
(pv) = 0. 9

to (7) and (8).
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Intensive Heat and Mass Exchange in Nonlinear

Asymmetric Fluids

The energy and mass conservation laws in moving asymmetric fluids in which heat conduction, dif-
fusion, and cross effects occur and dissipative processes for a binary mixture (C, p — C) are taken into
account, are

oFE e - -
~—6t— = div(Ay T + DyvC) 4 055, + Wipligs (10)

% = div(DyC-- D,y T), (11)

where A and D arethe heat conduction and diffusion coefficients; D, is the effective DuFour coefficient; and
D, is the effective coefficient of thermal diffusion.

The last member in (10), associated with the work of the volume and surface moments, has been in-
troduced in [14].

For intensive heat- and mass-exchange processes the coefficients A, D, Dy, D, must be considered
functions of the temperature T, the concentration C, the tensor invariants ejk, rik, and also the square
of the temperature and concentration gradients, (VT)? and (VC)?. The coefficient v and the viscosity coef-
ficients hence become functions of the temperature, concentration, (VT)? and (vC)?

Yy =Yilin Ln C T, (VT)% (VCP). (12)

The formulated system (1)-(12) permits solution of the problem of highly intensive convective heat-
and mass-exchange processes in asymmetric fluids. The nature of the forces and moments in (7) and (8) can
be distinct. In particular, these forces can be gravitational, Coriolis, electromagnetic, etc.

Boundary Conditions

The dynamics of an asymmetric fluid is described by two kinds of velocities, the translational v; and
the intrinsic rotation w;. Hence, more complex boundary conditions must be assigned than for the ordinary
fluid. .

Firstly, the translational velocity on the solid boundary is determined by the conditions of partial
adhesion and slip, which we shall consider to be proportional to the derivative of the velocity with respect
to the normal to the surface in a first approximation, as well as by the derivative of the temperature and
concentration along the tangent to the boundary surface

du

oT ac
BT Ty T

where Vg is the veloeity of the boundary; and vy is the slip velocity.

The boundary conditions, derived in [14], for the velocity components w; are

(13)

1 e dw; O
ag, (mh iy rot vh) =7, dived;;, + 1, o 4+ 15 a;’:h , (14)
3 i

where wj) are the coefficients of rotational surface friction. The mechanism of asymmetric fluid interac-
tion with solid surfaces has still not been clarified at present, hence, tests should show how well the
boundary conditions have been formulated.

The boundary conditions for the temperature and concentration are written also taking account of the
jumps in temperature and concentration:

aT do ac
Ts—Tg~‘uT on -+ %, % + % poat (15)
ac oT v
C,—C,="1 , (16)
e " A M N
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where Tq — T, is the temperature jump; Cg — Cg is the concentration jump; and v %o, wp, and &, are phe-
nomenological coefficients.

Taking account of the influence of the jumps in temperature, concentration and velocity in the for-
mulated boundary conditions (13)-(16) is particularly important in studying convective heat- and mass-
exchange processes of asymmetric fluids in macro- and microcapillaries,aswellasin rarefied asymmetric
gases.

Let us illustrate the singularities of convective heat- and mass-exchange processes in asymmetric
fluids by a number of problems.

Free Convection in a Vertical Channel

Let us examine the one-dimensional problem of free convection in a vertical channel. Let us con-
sider that there exist only the velocity component in the gravitational field direction vy, dependent on the x
coordinate (vy = v(x)) and the z component of the intrinsic angular velocity vector w, = w(x).

It is seen from the system (7)-(8) that the sole reason for the origin of a stationary rotational motion
in the absence of volume distributed moments (v = 0) is the inhomogeneous velocity field (v = v(x) in a
plane vertical channel). This field can excite the z velocity component of the intrinsic rotational motion.

Let us find the velocity fields v(x) and w(x) within a slot if the temperature of the solid slot walls is
kept constant, but different, and the velocities v and « thereon are zero. The formulated problem is de-
scribed by the following system of dimensionless equations

o +Al(m_ﬂ): :

dx? dx
2
Po 40 g7y,
dx? dx
2
¢T (17)
dx?

and the boundary conditions

() =o(x1)=0,

(18)
T{l)=—1, T(—D=1,
where
o X , T:TMT", U:L,
a 0 a
1 Jp poa®
- T T T & Gr:_—' >
P o or g V2
2 2
A — ya . A Y
! N2 * n-+-vy
Let us write down the solution of the problem
T =—x, (19)
[ chsx A, Gr x* A, Gr A,C
o=0,l ¢ A= e Bl N el
2[COSSX} R (20)
0= Cr—I sy 4 {EL{ Shsx}mAlGr g MGEC) ] (21)
6 [ S | sinsx 6s? s
where the constants C; and s are:
s = AI—“AIAm
Gr[L_AIAZ(_I _Lﬂths‘} b AA (T 1Y
0 — 6 253 s* ) tgs s 6 § _ 4G 11 Cy
! ] — A {ths + A4, * stcoss ( 2 s? Gr) '
s |tgs s?



An indeterminacy appears in the solution (20), (21) in the case s =0, A, =1. Passing to the limit as
A, — 1, we obtain the solution of the problem as

1 5—A o A

=G ——'——A _ 1 —x* —L C. 2t 5 »

v r{[ﬁ 160(3__141)]@ x%) + 150 (x x)} (22)

m_—_AIG"'{ S=A 4 X _AD | (23)
30 — 104, 2 24 ' 12030 —A4,)

It is seen from the solution (20)-(23) that the flow symmetry remains the same as in the case of an
ordinary fluid. In all cases the location of the velocity extrema shifts toward the slot walls, depends on
the slot size, and for s = 0 is determined by the formula

172

_{ —3D, - VoD + 20D, (D, + D) ]

10D,
Dlz_l__/hi, D, = A .
6 60(3— 4, 120

Approximate expressions can be presented for the magnitudes and extrema of the velocity in the case A,
« 1z : ‘

Gr ( x* x? 1
o=——A|———+—1,
6 4 2 40 J

Loy = = l_ + A A, 23_
173 90(2y 3—1)

If the coefficient of "cohesion" of the translational and rotational motion y vanishes, the profile of
the translational velocity becomes cubic (21), as in an ordinary fluid, and intrinsic rotation is not excited.

As is clear from the physical sense, the magnitude of the translational velocity in an asymmetric
fluid is less, other conditions being equal, than in an ordinary fluid. Indeed, the energy delivered to the
slot walls is now expended in dissipative processes associated with the rotational as well as the transla-
tional motion,

Diffusion of Suspended Particles in an Asymmetric Fluid

Let us determine the coefficient of diffusion of Brownian particles in an asymmetric fluid. It is known
that the diffusion coefficient is found from the Einstein formula [11, 12]

D =KTb. (24)
The mobility b is determined from the equation
v =0F, (25)

where v is the velocity of the Brownian particle, and F is the motive force which is in the case of spherically
symmetric particles [14]

F = 6anR*v, (26)
. BA R
R¥=R| 14 —1; k= ;
[ T l—kZA‘2+k(1+62k)] k,
1 o _
By =— S VWY 8 =12+ may! o+ dRng

Substituting (26) into (25), we find b. The expression obtained for the mobility is then substituted into (24),
yielding

KT [1 ' A T. (27)

6 R T —BAT (1 - 6,k)

1062



Let us present two limit cases of (27) when v/n > 1, a = «, and o = 0:

a=0 D= KT ,
B6anR [l + 2471 (A + )™
KT

6anR (14 A

ag—+00 D=

Solution of Certain Heat-Exchange Problems

in an Asymmetric Fluid

The exact solution of the classical problem of heat exchange in the steady-state mode of single-phase
fluid flow in a circular cylindrical tube with constant heat flux to the wall is successfully obtained.

The steady-state velocity profile in a circular eylindrical tube with constant pressure gradient has
been obtained in [14]. Considering the heat-exchange process steady and taking into account axial sym-
metry, let us write down the energy equation in dimensionless form

7 1 B ., 2 Jo (ko) — J, (R
L Lo taB ey 2R mLE (28)
g o dp AR (R 8,0, (R)
o=t A= e s g oR L
R Vs PR 4 0z
The physical fluid parameters are assumed constant.
Let us seek the temperature distribution assuring constant heat flux to the wall in the form
T = Bz + (o). (29)
We obtain the following equation for the function f(p)
1 d df ) v, BR | 2o 2 dy(ko)— T, (R) }
—— | p—— = Tl —p*F 1,
p dp dp pe A RN (R) + 84 (R)
whose solution, bounded at zero, is
1 27, (k) 7 1 2 4 4 k2 3
= 1= tp?P——pt—J, (% + Jo (k) — —,
! 4[ M ]p 16 O 0 T T ey T
(30)

M = A [k, (k) + 8J, (E)].

The solution obtained is easily integrated. The first three members yield the solution of the problem in
the ordinary viscous, heat-conducting fluid, while the rest are associated just with the asymmetric prop-
erties.

Let us calculate the Nusselt criterion referred to the diameter 2R

— 2R (df/dr)
Nu = o L (31)

Here fgy, the mean value of the temperature, over the cross section, is defined by the formula

R
4 5 fordr

fav *02—* :

nR%,,
For small values of kp(6 = 0, ) simple approximate expressions can be given for the velocity, the function
f and the Nusselt criterion. Limiting ourselves to terms of the order of (kp)® inclusive, in the Bessel func-

tion Jy, Jy, Jy, we obtain:
v =10, (1 —p%)(1+N), (32)
v, BR? 1 3

- <1+N)(92———.o4—~—), (33)

I= 4 4
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Nu = 4.36 (1 -~ N), (34)
Nea_ ¥ {1_ nyR? [2m+aR_l}}. 3)

Ny dn;(m+v) s

It is interesting to note that the Nusselt number in an asymmetric fluid becomes a function of the tube
radius.

It is seen from (35) that if

2(m, +aR) < (36)

then the Nusselt number is less than in the case of an ordinary fluid. But for a given asymmetric fluid,
the inequality (36) is spoiled as the tube radius R grows, and the Nusselt number can become larger than
in an ordinary fluid. Upon compliance with the condition

2(m, 4 aR) = n;

the Nusselt number in an ordinary and an asymmetric fluid agrees. Let us analyze the expression (30) for
the temperature.

The temperature at a fixed point within the tube will also differ from the temperature in 2 symmetric
fluid. Thus, upon compliance with condition (36), the temperature will be greater than in an ordinary fluid,
and conversely.

Let us turn now to the classical Gretz—Nusselt problem. In a complete formulation such a problem
in an asymmetric fluid is quite awkward. Hence, its solution is presented in approximate small kp. The
dimensionless energy equation for the parabolic flow mode (32) is

0T 1 0T u,R

0p® P op %

(l—pz)(1+1v)%.

Let us use the notation

.
0, R(1+ N)
Its solution under the boundary conditions

o=1 (>0, T=0,
2=0 (p<1), T=1

is known:

b ——ﬁ2al2
T=3 Cdpe * .
k=1

2 3 4
9 (o, ﬁ,{):l_.giph{_?._ﬂ( 2%‘%)94’*‘ ey

B, = 2.705, P, =6.66, By =10.6,

where Nusselt has found the first three coefficients
C, = 1477, C,=-0.810, C,=0.385.

The distinction between the considered problem and the case of heat exchange in an ordinary fluid
is that the dependence of the dimensionless temperature on the longitudinal z coordinate varies. Thus, for
a fixed value of z the temperature of an asymmetric fluid can be greater or less than in an ordinary fluid,
depending on condition (36).

Let us stress again that the predicted effects of the dependence of the Nusselt number on the tube
radius, the position of the velocity extrema in free convection on the slot size, the deviation of the val-
ues of the diffusion coefficient from the classical value, the anomaly in the temperature distribution during
heat exchange in tubes will apparently be most noticeable in convective heat- and mass-exchange pro-
cesses in dispersions of solid particles and macromolecular compounds in low-molecular fluids, poly-
electrolytes, physiological fluids, etc.
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